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Abstract. The constrained minimization problem of contact mechanics is investigated as a mixed boundary-value
problem determined on the active (contact) set of the solution. Using primal-dual methods of the shape sensitiv-
ity analysis, asymptotic expansions of the primal and dual state variables and the cost functional of energy are
obtained with respect to a perturbation of the active set in the direction of an arbitrary velocity vector field.
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1. Introduction

Problems involving contact have a wide range of applications in engineering sciences. Its clas-
sical representation is named after A. Signorini and considers the contact of an elastic solid
with a rigid obstacle, which we deal with here. Contact problems are nonlinear; their inherent
speciality concerns the fact that the contact set is unknown a priori. Moreover, at this contact
set, reaction (contact) forces are singular (unbounded) in nature.

Early progress in the investigation of contact problems was motivated by the development
of variational methods for free-boundary and unilaterally constrained problems. While there
are many works on this topic, we give only a few selected references [1–3].

Recently, the fast development of computing techniques has increased the interest in this
field. Efficient iterative methods are being developed for the numerical solution of con-
tact problems within the framework of discrete (finite-dimensional) constrained optimization.
However, discrete formulations lose the singular character of the reaction (contact) forces,
thus resulting in a decrease of the convergence rate of iterations as the dimension of a finite
basis of discretization increases. These observations motivate our turning to a continuous
(infinite-dimensional) analysis of contact problems.

One of the most efficient numerical strategies involves a split of the geometric set where
contact is unknown, into active and inactive complementary sets; see [4–6]. Following the
arguments of complementarity problems in optimization, we regard contact sets as the active
ones. To give a mathematical foundation of active-set strategies, one has to endow the active
set at the solution with proper measures, which distinguish it uniquely from all admissible
(variable) active sets.

In this paper we start with an active set found a posteriori at the solution of the con-
tact problem, and we study its sensitivity with respect to geometric perturbations of the active
(contact) set. For this reason we apply a primal-dual technique of the shape-sensitivity anal-
ysis, which is based on the results of [7–10]. In fact, once the active set is given, we restate
the contact problem via a mixed-boundary-value formulation, which is linear. Using the pri-
mal-dual setting of the problem, we overcome difficulties of the classical approach connected
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with curving of the boundary of a contacting body. In this way we derive expansion terms of
the stress and the energy characteristics of a solution of the contact problem, for an arbitrary
order of the expansion. For a specific 2-dimensional case, a method of singular perturbations
was applied to the mixed-boundary-value contact problem in [11].

2. Mathematical backgrounds

We investigate the constrained minimization problem of contact mechanics, which is presented
in the following form: Find the primal state variable u0 (displacements) such that ν�u0 ≤ψ
at �C (contact conditions) and

�(u0)≤�(u) for all u : ν�u≤ψ on �C, (1)

with a positive-definite quadratic cost functional � of the potential energy, an obstacle func-
tion ψ and the normal vector ν referenced to a geometric set �C .

To reformulate the contact problem (1) in an equivalent primal-dual form, a dual state
variable λ0 (the contact force) can be introduced such that the pair (u0, λ0) satisfies the rela-
tions:

L(u0, λ0)≤L(u,λ0) :=�(u)−〈λ0, ν�u−ψ〉�C for all u, (2a)

ν�u0 ≤ψ, λ0 ≤0, 〈λ0, ν�u0 −ψ〉�C =0 on �C, (2b)

with u0 obtained from (1).
Due to the complementarity conditions (2b), the geometric set �C can be split into the

active set A0 (where ν�u0 =ψ) and its complement, the inactive set I 0 yielding

ν�u0 =ψ on A0, λ0 =0 on I 0, (3a)

ν�u0<ψ on I 0, λ0 ≤0 on A0. (3b)

Once A0 is given, relations (2a) and (3a) result in the minimax problem: Find (u0, λ0) such
that λ0 =0 at I 0 and

L(u0, λ)=L(u0, λ0)≤L(u,λ0) for all u and λ : λ=0 on I 0. (4)

For an arbitrary given set At and its complement I t in �C , we have the corresponding
problem: Find (ut , λt ) such that λt =0 at I t and

L(ut , λ)=L(ut , λt )≤L(u,λt ) for all u and λ : λ=0 on I t .

It is well-posed in the sense that its solution can be derived from the following primal-dual
formulation of a mixed-boundary-value problem: Find (ut , λt ) such that

L(ut , λt )≤L(u,λt ) for all u,
ν�ut =ψ on At, λt =0 on I t .

(5)

However, it does not guarantee the fulfillment of inequalities like (3b) as long as At �=A0.
From a constrained optimization viewpoint, the mixed-boundary-value problem (5) corre-

sponds to an iteration of the solution of (2) by active-set strategies: Find (u(n), λ(n)) such that

L(u(n), λ(n))≤L(u,λ(n)) for all u,
ν�u(n)=ψ on A(n−1), λ(n)=0 on I (n−1).



Primal-dual sensitivity analysis of active sets 153

The principal question is a proper determination of iterations A(n−1) of the active set
providing a convergence (u(n), λ(n),A(n))→ (u0, λ0,A0) as n→ ∞. Based on the property of
generalized Newton differentiability, the super-linear convergence of a primal-dual active-set
strategy is obtained in [4–6] with

A(n−1)={x ∈�C : (ν�u(n−1)−ψ− cλ(n−1))(x)≥0} (c>0).

However, the difficulty of this strategy concerns a fortuitous regularity of λ(n) in the mixed-
boundary-value problem of contact mechanics.

Motivated by this consideration, in the present paper we study the sensitivity of the con-
tact problem with respect to perturbations of the active set at the solution.

From a physical point of view, the active set A0 implies the contact zone, the inactive set
I 0 characterizes a zone where no contact occurs, and the dual state variable λ0 describes the
contact force at A0. For fixed external data (load and geometry) of the contact problem, these
characteristics can be uniquely obtained from the solution of (1) due to its uniqueness. Rela-
tions (5) imply a fictitious contact force λt found a posteriori at a prescribed active set At . In
this light, the mixed-boundary-value formulation (4) provides a tool to describe the variation
of the true contact force λ0 just varying the active set from A0 to At without changes in the
external data of the contact problem.

Considering At as a perturbation of A0 in dependence of a parameter t , we get an asymp-
totic expansion of the solution (ut , λt ) and the cost functional �(ut ) with respect to t→0. We
prove that the shape derivative �′

V (u
0) in an arbitrary direction V of the perturbation is zero.

3. Perturbation problem

3.1. Formulation of a contact problem

Let �⊂R
N , where N=2 or N=3, be a bounded domain with the boundary ∂�=�D∪�N ∪�C

such that �N and �C are disjoint by �D, as illustrated in Figure 1. We assume an outward
normal vector ν= (ν1, . . . , νN)

� at ∂� being sufficiently smooth. The standard notation of lin-
ear elasticity is used for a displacement vector u= (u1, . . . , uN)

�(x) with the spatial variable
x= (x1, . . . , xN)

� ∈R
N , for the linear strain tensor εij (u)= 0.5(ui,j +uj,i) with i, j = 1, . . . ,N ,

and for the symmetric stress tensor σij (u)= cijklεkl(u) with a positive-definite N ×N ×N ×N -
tensor of elasticity coefficients cijkl(x). The convention of summation over repeated indices
i, j, k, l, s=1, . . . ,N and differentiation with respect to a variable with the index following after
a comma is utilized.
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Figure 1. The geometry and load for the contact problem.
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Supposing a clamping at �D of a solid occupying the domain �, we apply a volume
load field f = (f1, . . . , fN)

�(x) in � and a boundary traction force g = (g1, . . . , gN)
�(x) at

�N . The solid is assumed to be constrained at �C by an obstacle, which we express with
the help of a regular scalar function ψ(x) such that ψ > 0 at the boundary of �C . These
constructions are illustrated in Figure 1. Thus, the following equations and inequalities are
considered:

−σij,j (u)=fi i=1, . . . ,N in �, (6a)

u=0 on �D, (6b)

σij (u)νj =gi i=1, . . . ,N on �N, (6c)

στ (u)=0 on �C, (6d)

ν�u≤ψ, σν(u)≤0, σν(u)
(
ν�u−ψ)=0 on �C, (6e)

where a decomposition into normal and tangential components at �C is applied according to

σij (u)νj =σν(u)νi +στ (u)i i=1, . . . ,N,
σν(u) :=σij (u)νj νi, στ (u)i :=σij (u)νj −σν(u)νi . (7)

Let us denote the set of admissible displacements accounting (6b) by

H :={u∈H 1(�)N : u=0 on �D}.

For given f ∈L2(�)N and g ∈L2(�N)
N we introduce a quadratic functional of the potential

energy of the solid as

�(u)= 1
2

∫

�

σij (u)εij (u)dx−
∫

�

fiui dx−
∫

�N

g�uds. (8)

The weak solution to the boundary-value contact problem (6) can be defined from the follow-
ing constrained minimization problem: Find u0 ∈H such that ν�u0 ≤ψ almost everywhere �C
and

�(u0)≤�(u) for all u∈H : ν�u≤ψ on �C. (9)

Minimization problem (9) is equivalent to the variational inequality
∫

�

σij (u
0)εij (u−u0)dx≥

∫

�

fi(u−u0)i dx+
∫

�N

g�(u−u0)ds

for all u∈H : ν�u≤ψ on �C.

(10)

3.2. Mixed formulation of the contact problem

The contact force σν(u0) is defined as a distribution in H−1/2(�C) from (10) and Green’s
formula

∫

�

σij (u
0)εij (u)dx=−

∫

�

σij,j (u
0)ui dx+

∫

�N

σij (u
0)νjui ds

+〈σν(u0), ν�u〉�C +〈στ (u0)i , uτi〉�C for u∈H,
(11)
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where decomposition (7) is applied, and 〈 ·, ·〉�C denotes a duality pairing at �C between
H

1/2
00 (�C) and its dual space H−1/2(�C); see [9]. Therefore, conditions (6e) are fulfilled in the

generalized sense that

ν�u0 ≤ψ almost everywhere �C,

〈σν(u0), η+ν�u0 −ψ〉�C ≤0 for all 0≤η∈H 1/2
00 (�C).

(12)

We define a dual variable as

λ0 =σν(u0). (13)

Due to (6a), (6c), (6d), it follows from (11) that the primal variable u0 and the dual variable
in (13) are connected by the relation for all u∈H :

∫

�

σij (u
0)εij (u)dx−〈λ0, ν�u〉�C =

∫

�

fiui dx+
∫

�N

g�uds. (14)

Note that (14) can also be obtained as an optimality condition with respect to the primal
variable u of the Lagrangian

L(u,λ) :=�(u)−〈λ, ν�u−ψ〉�C . (15)

For problem (9) we define active/inactive sets, respectively as

A0 ={x ∈�C : ν�u0(x)=ψ(x)}, I 0 =�C \A0; (16)

see Figure 1 for an illustration. Let us look for boundary conditions fulfilled at A0 and I 0.
Obviously, ν�u0 −ψ = 0 on A0. If λ0 is a point-wise function, then λ0 = 0 at I 0 due to (6e),
thus fulfilling a strict complementarity condition which is formulated later in (17). In the gen-
eral case, we suppose that the support of A0 is compact in �C . Henceforth, there exists 0 ≤
χ ∈C∞

0 (�C) such that χ = 1 at A0. Assuming that ν�u0 is continuous at �C , for an arbi-
trary fixed δ>0 and ξ ∈H 1/2

00 (�C)∩C0(�C) with ξ =0 at A0, a constant c>0 exists such that
η=ψ−ν�u0 + c(δχ ± ξ)≥0 at �C . The substitution of such a test function η in (12) follows

|〈λ0, ξ〉�C |≤−δ〈λ0, χ〉�C .

Letting δ→0 in this inequality and using density arguments (see [12, Theorem 1.4.2.2, p.24]),
we derive

〈λ0, ξ〉�C =0 for all ξ ∈H 1/2
00 (�C) : ξ =0 on A0. (17)

Alternatively to the assumption of the continuity of ν�u0, we can suppose that a tangent
cone

T (u0) := cl {ξ ∈H 1/2
00 (�C) : c>0 exists such that ψ−ν�u0 + cξ ≥0 on �C} (18)

coincides with the following closed convex set

T (u0)={ξ ∈H 1/2
00 (�C) : ξ ≥0 on A0} (19)

according to the definition and the results on tangent cones given in [7]. In the case of equiv-
alence of (18) and (19), the equality stated in (17) holds also true. To prove this fact, we
observe that, for any ξ ∈H 1/2

00 (�C) with ξ = 0 at A0, the inclusion ±ξ ∈ T (u0) holds due
to (19). On the other hand, in view of (18), two sequences ξn± ∈H 1/2

00 (�C) exist such that
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ξn± →±ξ strongly in H 1/2
00 (�C) as n→∞, and constants cn±>0 exist such that η=ψ−ν�u0 +

cn±ξn± ≥0 at �C . The substitution of such a test function η in (12) leads to

〈λ0, ξn±〉�C ≤0.

Letting n→∞ in this inequality we arrive at (17).
We denote the dual cone corresponding to (17) by

M0 ={λ∈H−1/2(�C) : 〈λ, ξ〉�C =0 for all ξ =0 on A0}.

From (14) and (17) it follows that the pair (u0, λ0) obtained in (9) and (13) satisfies a mini-
max problem with the Lagrangian (15): Find (u0, λ0)∈H ×M0 such that

L(u0, λ)=L(u0, λ0)≤L(u,λ0) for all (u, λ)∈H ×M0. (20)

The minimax problem (20) is well-posed, as will be proved in the following section. The first-
order optimality condition for (20) yields the variational equation (14) and the relation

〈λ, ν�u0 −ψ〉�C =0 for all λ∈M0 (21)

with respect to the dual variable λ.
In order to obtain the uniqueness of the solution to the linear equations (14) and (21)

(thus the uniqueness to (20)), it is sufficient to prove that the corresponding homogeneous
equations

∫

�

σij (ū)εij (u)dx−〈λ̄, ν�u〉�C =0 for all u∈H, (22a)

〈λ, ν�ū〉�C =0 for all λ∈M0 (22b)

have only the trivial solution (ū, λ̄)∈H ×M0. Indeed, substituting a smooth test function λ in
(22b) such that λ= 0 at I 0, we derive ν�ū= 0 at A0. Therefore 〈λ̄, ν�ū〉�C = 0, and the sub-
stitution of u= ū in (22a) follows ū=0, hence λ̄=0.

3.3. Perturbation of the active set

For a perturbation parameter 0≤ t≤T with fixed T >0, let V (t, x)∈C([0, T ];W 1,∞(RN))N be
a given velocity vector field. We suppose that for all t

V (t)=0 on�D ∪�N, ν�V (t)=0 on �C, (23)

i.e., the velocity is tangential to �C . As an example of such a function consider the velocity
vector field V =χ� with a vector � tangential to the boundary ∂�, which is multiplied by a
scalar cut-off function χ supported in a neighborhood of the boundary �C . Now we define
a map �∈C1([0, T ];W 1,∞(RN))N as the classical solution to the nonlinear ODE

d�
dt

=V (t,�) for t ≥0, �(0)=x. (24)

The inverse map �−1 ∈W 1,∞((0, T )×R
N)N exists, and is unique. The corresponding one-to-

one coordinate transformation is defined as

y=�(t, x) : (�,�D,�N,�C)→ (�,�D,�N,�C) for t ∈ [0, T ]. (25)
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For fixed t ∈ (0, T ) consider a perturbation of the active set in (16)

At :=A0 ◦�−1(t) (⊂�C according to (25)).

On the perturbed dual cone

Mt ={µ∈H−1/2(�C) : 〈µ,η〉�C =0 for all η=0 on At }
we define the following perturbed problem: Find (ut , λt )∈H ×Mt such that

L(ut ,µ)=L(ut , λt )≤L(u,λt ) for all (u,µ)∈H ×Mt. (26)

The solution of the minimax problem (26) can be obtained by using the following equivalent
relations:

ut ∈H such that ν�ut =ψ on At, (27a)

�(ut )≤�(u) for all u∈H : ν�u=ψ on At, (27b)

λt =σν(ut ), (27c)

which define a weak solution to the mixed-boundary-value problem with respect to ut (com-
pare with (6)):

−σij,j (ut )=fi i=1, . . . ,N in �,

ut =0 on �D,

σij (u
t )νj =gi i=1, . . . ,N on �N,

στ (u
t )=0 on �C,

ν�ut =ψ on At, σν(u
t )=0 on I t .

(28)

In the following, we establish the equivalence of the formulations (26) and (27). Let (26)
hold true. The substitution of a test function µ=λt ±η in (26) with smooth η such that η=0
at I t leads to (27a). Therefore, 〈λt , ν�ut −ψ〉�C = 0, and taking test functions u∈H in (26)
such that ν�u=ψ at At results in (27b). The Euler equation for (26) with respect to the pri-
mal state variable ut reads

∫

�

σij (u
t )εij (u)dy−〈λt , ν�u〉�C =

∫

�

fiui dy+
∫

�N

g�uds for all u∈H. (29)

Applying Green’s formula similar to (11) with ut instead of u0 in the standard way from (29),
we arrive at (27c).

Conversely, let (27) hold true. In view of (27a) we get

〈µ,ν�ut −ψ〉�C =0 for all µ∈Mt. (30)

The minimization problem: Find ut ∈H such that ν�ut =ψ at At fulfilling (27b) is equivalent
to the variational inequality

∫

�

σij (u
t )εij (u−ut )dy−

∫

�

fi(u−ut )i dy−
∫

�N

g�(u−ut )ds≥0

for all u∈H : ν�u=ψ on At .

(31)

Applying Green’s formula to the left-hand side of (31), due to the equilibrium equation and
boundary conditions fulfilled in (28), we derive the inequality

〈σν(ut ), ν�(u−ut )〉�C ≥0 for all u∈H : ν�u=ψ on At . (32)
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Substituting u=ut ± ξ in (32) with ξ ∈H such that ξ =0 at At and using (27c), we conclude
that λt ∈Mt . Hence, (30) gets

L(ut ,µ)=L(ut , λt ) for all µ∈Mt.

Green’s formula provides us with the equality (29), which is equivalent to

L(ut , λt )≤L(u,λt ) for all u∈H.
Thus we obtain the equation and the inequality in (26).

In view of the unique solvability of the minimization problem fulfilling (27a) and (27b),
the solution (ut , λt )∈H ×Mt to (26) exists, is unique, and satisfies the optimality conditions

∫

�

σij (u
t )εij (u)dy−〈λt , ν�u〉�C =

∫

�

fiui dy+
∫

�N

g�uds

for all u∈H,
(33a)

〈µ,ν�ut −ψ〉�C =0 for all µ∈Mt. (33b)

Our aim is to expand (33) with respect to t→0. To this purpose we employ the coordinate
transformation (25). Obviously, At ◦�=A0. The following one-to-one correspondence prop-
erty holds true:

(u, λ)∈H ×M0 ⇒ (u◦�−1, λ◦�−1)∈H ×Mt,

(u,µ)∈H ×Mt ⇒ (u◦�,µ◦�)∈H ×M0,
(34)

where the transformation of distributions λ and µ in (34) is defined in the generalized
sense:

〈λ◦�−1, ξ〉�C :=〈λ,ω(ξ ◦�)〉�C for ξ ∈H 1/2
00 (�C),

〈µ◦�,ξ〉�C :=〈µ, (ω−1ξ)◦�−1〉�C for ξ ∈H 1/2
00 (�C),

(35)

with the Jacobian at �C

ω=det(�,x)
∣∣(�−1

,x )
�ν

∣∣. (36)

It will be shown later in (38) that the Jacobian ω is strictly positive for small t .

4. Sensitivity analysis

4.1. Expansion of the operator of the problem

We start with expansions of the used functions as t→0. For this purpose we assume the suffi-
cient smoothness of data involved later. From (24) it follows that

�=x+ tV + t2

2 W +· · · , W :=V,t +V,xV,
�,x = I + tV,x + t2

2 W,x +· · · ,
�−1
,x = I − tV,x + t2

2

(
2V,xV,x −W,x

)+· · · ,
det(�,x)=1+ t divV + t2

2

(
2 det(V,x)−divW

)+· · · ,

(37)

where I means the identity operator, and the following notation is used:

ξ,x := (ξ,j )Nj=1 = (∇ξ)� for ξ : RN →R,

ξ,x := (ξi,j )Ni,j=1, divξ := ξi,i for ξ : RN →R
N.
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From (36) and (37) we derive

ω=1+ t divτ V + t2

2 ω
(2)+· · · ,

ω(2)=2
(
det(V,x)+ν�V,xV,xν

)+|V,xν|2 −divτ V (ν�V,xν),
(38)

with the standard notation of tangential derivatives at �C as

∇τ ξ :=∇ξ − (ν�∇ξ)ν for ξ : RN →R,

divτ ξ :=divξ −ν�ξ,xν for ξ : RN →R
N.

(39)

Taylor expansion of a smooth function ξ : RN →R provides

ξ ◦�= ξ + tV �∇ξ + t2

2

(
V �∇ξ,xV +W�∇ξ)+· · · . (40)

Since u,y = (u◦�),x�−1
,x we arrive at the generalized strain tensor

Eij (�
−1
,x ;u) :=0.5

(
ui,k�

−1
k,j +uj,k�−1

k,i

)
i, j =1, · · · ,N, (41)

which admits a decomposition as t→0, in view of (37), as

Eij (�
−1
,x ;u)= εij (u)− tEij (V,x;u)+ t2

2
Eij (2V,xV,x −W,x;u)+· · · (42)

Note that the coordinate transformation (25) applied to (33), with account taken of (34),
(35), and (41), results in an equivalent problem with respect to (ut ◦�,λt ◦�)∈H ×M0:

∫

�

det(�,x)(cijkl ◦�)Ekl(�−1
,x ;ut ◦�)Eij (�−1

,x ;u)dx

−〈λt ◦�,ω(ν ◦�)�u〉�C =
∫

�

det(�,x)(fi ◦�)ui dx+
∫

�N

g�uds for all u∈H, (43a)

〈λ,ω(
(ν ◦�)�(ut ◦�)−ψ ◦�)〉�C =0 for all λ∈M0. (43b)

With the help of expansions (37), (38), (40), and (42) we can expand the terms in (43) as
∫

�

det(�,x)(cijkl ◦�)Ekl(�−1
,x ;u)Eij (�−1

,x ;u)dx

=
∫

�

(
σij (u)εij (u)+ ta(1)(V ;u,u)+ t2

2
a(2)(V ,W ;u,u)+· · · )dx,

〈λ,ω(ν ◦�)�u〉�C =〈λ, ν�u+ tb(1)(V ; νi)ui + t2

2
b(2)(V ,W ; νi)ui +· · · 〉�C ,

∫

�

det(�,x)(fi ◦�)ui dx=
∫

�

(
fiui + tdiv(Vfi)ui + t2

2
c(2)(V ,W ;fi)ui +· · · )dx,

〈λ,ω(
(ν ◦�)�(ut ◦�)−ψ ◦�)〉�C =〈λ, ν�u−ψ+ t(b(1)(V ; νi)ui −b(1)(V ;ψ))

+ t
2

2

(
b(2)(V ,W ; νi)ui −b(2)(V ,W ;ψ))+· · · 〉�C ,

(44)

where

a(1)(V ;u,u) :=div(V cijkl)εkl(u)εij (u)−2σij (u)Eij (V,x;u),
b(1)(V ;ψ) := divτ V ψ+V �∇ψ, b(1)(V ; νi) :=divτ V νi + (ν,xV )i,

(45a)
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a(2)(V ,W ;u,u) := (
2det(V,x)−divW

)
σij (u)εij (u)

+(
2divV (V �∇cijkl)+V �∇cijkl,xV +W�∇cijkl

)
εkl(u)εij (u)

−4div(V cijkl)εkl(u)Eij (V,x;u)+2cijklEkl(V,x;u)Eij (V,x;u)
+2σij (u)Eij (2V,xV,x −W,x;u),

b(2)(V ,W ;ψ) :=2divτ V (V �∇ψ)+V �∇ψ,xV +W�∇ψ+ω(2)ψ,
b(2)(V ,W ; νi) :=2divτ V (V �∇νi)+V �∇νi,xV +W�∇νi +ω(2)νi ,
c(2)(V ,W ;fi) := (

2det(V,x)−divW
)
fi

+2divV (V �∇fi)+V �∇fi,xV +W�∇fi i=1, . . . ,N.

(45b)

Note that ν,xV is a vector tangential at �C since ν�ν,xV =0 due to ν�ν=1.

4.2. Material derivatives of the solution

We look for a global expansion as t→0 of the primal and the dual variables in the form

ut ◦� =u0 + t u̇V + t2

2
üV +· · · in H,

λt ◦� =λ0 + t λ̇V + t2

2
λ̈V +· · · in M0,

(46)

where the dot and the subscript V stand for the directional (material) derivative of a func-
tion in direction of the velocity vector V . The substitution of (46) in (43) together with (44)
provide formal equations for the expansion terms of the same powers of t . The equations for
the zero-power terms coincides with (14) and (21). To obtain zero terms at the first-power of
t in the expansion of (43), we should determine (u̇V , λ̇V )∈H ×M0 satisfying the following
system

∫

�

σij (u̇V )εij (u)dx−〈λ̇V , ν�u〉�C =
∫

�

(
div(Vfi)ui

−a(1)(V ;u0, u)
)

dx+〈λ0, b(1)(V ; νi)ui〉�C for all u∈H,
(47a)

〈λ, ν�u̇V +b(1)(V ; νi)u0
i −b(1)(V ;ψ)〉�C =0 for all λ∈M0. (47b)

Relations (47) can be obtained as optimality conditions for the minimax problem: Find
(u̇V , λ̇V )∈H ×M0 such that

L1(u̇V , λ)=L1(u̇V , λ̇V )≤L1(u, λ̇V ) for all (u, λ)∈H ×M0, (48)

where

L1(u, λ) :=
∫

�

(
1
2
σij (u)εij (u)+a(1)(V ;u0, u)−div(Vfi)ui

)
dx

−〈λ, ν�u+b(1)(V ; νi)u0
i −b(1)(V ;ψ)〉�C −〈λ0, b(1)(V ; νi)ui〉�C .

(49)

Problem (48) (hence (47)) is well-posed, similarly to (26), due to the fact that the quadratic
functionals L1 in (49) and L in (15) coincide in the second-order terms, and only their linear
terms are different.
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We apply to (47a) formally Green’s formula and derive with the help of (45a), (6), and
(23) the following identity

∫

�

(
div(Vfi)ui −a(1)(V ;u0, u)

)
dx+

∫

�C

λ0b(1)(V ; νi)ui ds=−
∫

�

σij,j (u
0
,xV )ui dx

+
∫

�C

(
dν(V ;u0)(ν�u)+ (

dτ (V ;u0)+λ0(ν,xV )
)�
uτ

)
ds,

(50)

where uτ =u− (ν�u)ν, with the notation

dν(V ;u0) := (−V �∇cijklεkl(u0)+ cijklEkl(V,x;u0)
)
νj νi,

dτ (V ;u0)i := (−V �∇cijklεkl(u0)+ cijklEkl(V,x;u0)
)
νj

−dν(V ;u0)νi +σij (u0)νkVk,j −λ0(ν�V,xν)νi i=1, . . . ,N.

(51)

Relations (11) and (50) lead to a mixed-boundary-value formulation of the variational prob-
lem (47) with respect to the primal variable u̇V as follows:

−σij,j (u̇V )=−σij,j (u0
,xV ) i=1, . . . ,N in �,

u̇V =0 on �D,

σij (u̇V )νj =0 i=1, . . . ,N on �N,

στ (u̇V )=dτ (V ;u0)+λ0(ν,xV ) on �C,

σν(u̇V )=dν(V ;u0) on I 0,

ν�u̇V =b(1)(V ;ψ)− (ν,xV )�u0
τ on A0,

(52)

and λ̇V = σν(u̇V )− dν(V ;u0). Note that (52) differs from (28) (with t = 0) only in the right-
hand sides.

To obtain that the terms of the second power of t are zero in the expansion of (43), we
should determine the second-order material derivatives (üV , λ̈V )∈H ×M0 from the equations

∫

�

σij (üV )εij (u)dx−〈λ̈V , ν�u〉�C

=
∫

�

(
c(2)(V ,W ;fi)ui −2a(1)(V ; u̇V , u)−a(2)(V ,W ;u0, u)

)
dx

+2〈λ̇V , b(1)(V ; νi)ui〉�C +〈λ0, b(2)(V ,W ; νi)ui〉�C for u∈H, (53a)

〈λ, ν�üV +2b(1)(V ; νi)(u̇V )i +b(2)(V ,W ; νi)u0
i

−b(2)(V ,W ;ψ)〉�C =0 for all λ∈M0.
(53b)

The unique solvability of (53) can be obtained similarly to (47), and this system implies the
optimality conditions for the minimax problem: Find (üV , λ̈V )∈H ×M0 such that

L2(üV , λ)=L2(üV , λ̈V )≤L2(u, λ̈V ) for all (u, λ)∈H ×M0, (54)

with the Lagrangian

L2(u, λ) :=
∫

�

(
1
2
σij (u)εij (u)+2a(1)(V ; u̇V , u)+a(2)(V ,W ;u0, u)− c(2)(V ,W ;fi)ui

)
dx

−〈λ, ν�u+2b(1)(V ; νi)(u̇V )i +b(2)(V ,W ; νi)u0
i −b(2)(V ,W ;ψ)〉�C

−2〈λ̇V , b(1)(V ; νi)ui〉�C −〈λ0, b(2)(V ,W ; νi)ui〉�C . (55)

Also higher-order derivatives can be determined in the same way. Justification of the global
asymptotic expansion will be given in the Appendix.
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5. Shape differentiability

5.1. Asymptotic expansion of the potential energy

Let us consider a reduced function of the potential energy for the perturbed problem (33)
depending on the parameter t as follows

P(t) :=�(ut )=L(ut , λt )= 1
2

∫

�

σij (u
t )εij (u

t )dx−
∫

�

fiu
t
i dx−

∫

�N

g�ut ds. (56)

Respectively, for the unperturbed problem (14), (21) we have according to (8) and (56) that
at t=0

P(0)=�(u0)=L(u0, λ0). (57)

Now we give an expansion of (56) with respect to t→0 with the help of (46).
The coordinate transformation (25) applied to (56) provides its equivalent representation

P(t) =
∫

�

(
1
2

det(�,x)(cijkl ◦�)Ekl(�−1
,x ;ut ◦�)Eij (�−1

,x ;ut ◦�)

−det(�,x)(fi ◦�)(ut ◦�)i
)

dx+
∫

�N

g�(ut ◦�)ds.
(58)

An asymptotic expansion of (58) as t→ 0 can be obtained by using (44), (46), and (A8) in
the form

P(t)=P(0)+ tP ′
V (0)+

t2

2
P ′′
V (0)+o(t2), (59)

where

P ′
V (0)=

∫

�

(
σij (u

0)εij (u̇V )+ 1
2
a(1)(V ;u0, u0)−div(Vfi)u0

i −fi(u̇V )i
)

dx−
∫

�N

g�u̇V ds,

(60a)

P ′′
V (0)=

∫

�

(
σij (u

0)εij (üV )+σij (u̇V )εij (u̇V )+2a(1)(V ;u0, u̇V )+ 1
2
a(2)(V ,W ;u0, u0)

−c(2)(V ,W ;fi)u0
i −2div(Vfi)(u̇V )i −fi(üV )i

)
dx−

∫

�N

g�üV ds. (60b)

The substitution of u= u̇V in (14) and λ=λ0 in (47b) provides the equality
∫

�

σij (u
0)εij (u̇V )dx+〈λ0, b(1)(V ; νi)u0

i −b(1)(V ;ψ)〉�C =
∫

�

fi(u̇V )i dx+
∫

�N

g�u̇V ds,

and the following representation of the first derivative in (60a) is obtained as

P ′
V (0)=

∫

�

(
1
2
a(1)(V ;u0, u0)−div(Vfi)u0

i

)
dx−〈λ0, b(1)(V ; νi)u0

i −b(1)(V ;ψ)〉�C , (61)

which is independent of the material derivatives of the solution. We recall the definition of
b(1) in (45a) and note that

〈λ0,divτ V (ν�u0 −ψ)〉�C =0, (62)
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due to the fact that ν�u0 −ψ=0 at A0 and λ0 =0 at I 0. Therefore, accounting for (62), from
(61) we arrive at the final formula

P ′
V (0)=

∫

�

(
1
2
a(1)(V ;u0, u0)−div(Vfi)u0

i

)
dx−〈λ0, V �(ν�

,xu
0 −∇ψ)〉�C . (63)

Similarly, the substitution of u= üV in (14), λ=λ0 in (53b), and u= u̇V in (47a) yields
∫

�

σij (u
0)εij (üV )dx+〈λ0,2b(1)(V ; νi)(u̇V )i +b(2)(V ,W ; νi)u0

i

−b(2)(V ,W ;ψ)〉�C =
∫

�

fi(üV )i dx+
∫

�N

g�üV ds,
∫

�

σij (u̇V )εij (u̇V )dx=
∫

�

(
div(Vfi)(u̇V )i −a(1)(V ;u0, u̇V )

)
dx

+〈λ0, b(1)(V ; νi)(u̇V )i〉�C
and the representation of the second derivative in (60b) as

P ′′
V (0)=

∫

�

(
1
2
a(2)(V ,W ;u0, u0)−σij (u̇V )εij (u̇V )

−c(2)(V ,W ;fi)u0
i

)
dx−〈λ0, b(2)(V ,W ; νi)u0

i −b(2)(V ,W ;ψ)〉�C , (64)

which is dependent only on the first material derivatives of the solution. Higher-order deriv-
atives of P can be derived in a similar way.

5.2. The case of a smooth solution

In this section we assume that the solution (u0, λ0) to (14), (21) possesses an additional H 2 ×
L2-regularity on the support of V in �. This assumption holds true for smooth data.

Integration by parts applied to the integral in (61) gives
∫

�

(
1
2
a(1)(V ;u0, u0)−div(Vfi)u0

i

)
dx=

∫

�

(
σij,j (u

0)+fi
)
V �∇u0

i dx

−
∫

∂�

(
σij (u

0)νj (V
�∇u0

i )+ (ν�V )fiu0
i

)
ds.

(65)

Due to the regularity of u0, we can represent the boundary term in (63) with the help of (39)
and the following identity

V �(ν�
,xu

0 −∇ψ) =V �(∇τ (ν�u0 −ψ)− (u0
,x)

�ν
)

+(ν�V )
(
ν�ν�

,xu
0 +ν�(u0

,x)
�ν−ν�∇ψ)

.
(66)

Using (23), decomposition (7), and relations (6), it follows that

σij (u
0)νj (V

�∇u0
i )=λ0(V

�(u0
,x)

�ν) on �C,

and from (63), (65), and (66) we derive the equality

P ′
V (0)=−

∫

�C

λ0V �∇τ (ν�u0 −ψ)ds.

In view of the smoothness of the solution and the complementarity conditions (6e) at �C ,
ν�u0 −ψ=0 is fulfilled and, additionally, ∇τ (ν�u0 −ψ)=0 on the active set A0. On the other
hand, λ0 =0 on the inactive set I 0. Thus P ′

V (0)=0 in this case.
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6. Concluding remarks

Restating the contact problem (6) as a mixed-boundary-value contact problem (28) (with
t = 0), we avoid the nonlinearity feature of the contact problem. However, without employ-
ing dual arguments, we would encounter the following difficulty. Note that the following two
sets are different

{u∈H : ν�u=ψ on A0}
�= {u◦�∈H : (ν ◦�)�u◦�=ψ ◦� on A0 =At ◦�}

when considering the curvilinear boundary in contact. Consequently, there is no one-to-one
correspondence between

{u∈H : ν�u=ψ onA0} and {u∈H : ν�u=ψ onAt }.
This feature renders the sensitivity analysis difficult within a primal formulation of the con-
tact problem. Employing the dual variable (contact force) in the minimax problem (26), which
is equivalent to (28), we provide the required property of one-to-one correspondence stated
in (34). Thus, relaxing on the primal-dual formulation of the mixed-boundary-value contact
problem provides the treatment of curvilinear boundaries in contact.

The other principal point of our approach concerns the equivalence of the contact prob-
lem (6) and the mixed-boundary-value contact problem (28) (with t=0). Generally speaking,
these two problems are different. Of course, they are the same in the case of smooth solutions
and in the finite-dimensional (discrete) setting of the problems. Nevertheless, in (18) and (19)
we get a sufficient property for the equivalence in the general setting of the contact problem.

One of the findings of our study is that the derivative of the potential-energy functional
with respect to perturbations of the active (contact) set is zero for the contact problem. How-
ever, we do not have its converse assertion. Generally speaking, only the inequalities in (3b)
guarantee that the solution obtained in (4) is also a solution to the contact problem (1).

Finally, we stress that the obtained asymptotic formulas are useful for applications, since
they provide approximations of the solution to the contact problem, which is nonlinear, by
employing mixed-boundary-value problems only, which are linear.
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Appendix

Let us justify rigorously expansion (46) for the solutions of (20), (26), (48), and (54).
From (43a) we can derive that there exists a small constant t0>0 such that the following

estimation is uniform for all 0≤ t ≤ t0:

‖ut ◦�‖H +‖λt ◦�‖M0 ≤ const. (A1)

Due to λ0, λt ◦�∈M0, the substitution of λt ◦�− λ0 in (21) and (43b) provides in view of
(44) that

〈λt ◦�−λ0, ν�(ut ◦�−u0)〉�C =−t〈λt ◦�−λ0, b(1)(V ; νi)(ut ◦�)i −b(1)(V ;ψ)〉�C +o(t).
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Therefore, substituting ut ◦�−u0 in (14) and (43a) yields the decomposition
∫

�

σij (u
t ◦�−u0)εij (u

t ◦�−u0)dx= t
∫

�

(
div(Vfi)(ut ◦�−u0)i

−a(1)(V ;u0, ut ◦�−u0)
)

dx− t〈λt ◦�,b(1)(V ; νi)u0
i −b(1)(V ;ψ)〉�C

+t〈λ0, b(1)(V ; νi)(ut ◦�)i −b(1)(V ;ψ)〉�C +o(t),
and due to (A1) it follows the uniform estimation

‖ut ◦�−u0‖H ≤ ct. (A2)

Now from (14) and (43a) we derive that for u∈H

〈λt ◦�−λ0, ν�u〉�C =
∫

�

σij (u
t ◦�−u0)εij (u)dx− t

∫

�

(
div(Vfi)ui

−a(1)(V ;ut ◦�,u))dx− t〈λt ◦�,b(1)(V ; νi)ui〉�C +o(t),
and in view of (A1) and (A2) we conclude with the next estimation

‖ut ◦�−u0‖H +‖λt ◦�−λ0‖M0 ≤ ct. (A3)

Similarly, from (14), (43a), and (47a), which is multiplied by t , it follows that

〈λt ◦�−λ0 − t λ̇V , ν�u〉�C =
∫

�

(
σij (u

t ◦�−u0 − t u̇V )εij (u)

+ta(1)(V ;ut ◦�−u0, u)+ t2

2
a(2)(V ,W ;ut ◦�,u)

− t
2

2
c(2)(V ,W ;fi)ui

)
dx− t2

2
〈λt ◦�,b(2)(V ,W ; νi)ui〉�C +o(t2). (A4)

The substitution of λ= λt ◦�− λ0 − t λ̇V in (21), (43b), and (47b), which is multiplied by t ,
provides the decomposition

〈λt ◦�−λ0 − t λ̇V , ν�(ut ◦�−u0 − t u̇V )〉�C
=−〈λt ◦�−λ0 − t λ̇V , tb(1)(V ; νi)(ut ◦�−u0)i

+ t
2

2
b(2)(V ,W ; νi)(ut ◦�)i − t2

2
b(2)(V ,W ;ψ)〉�C +o(t2). (A5)

Taking u=ut ◦�−u0 − t u̇V as a test function in (A4) and subtracting it from (A5), we have
the identity

∫

�

σij (u
t ◦�−u0 − t u̇V )εij (ut ◦�−u0 − t u̇V )dx

=−
∫

�

(
ta(1)(V ;ut ◦�−u0, ut ◦�−u0 − t u̇V )+ t2

2
a(2)(V ,W ;ut ◦�,ut ◦�−u0 − t u̇V )

− t
2

2
c(2)(V ,W ;fi)(ut ◦�−u0 − t u̇V )i

)
dx

−〈λt ◦�−λ0 − t λ̇V , tb(1)(V ; νi)(ut ◦�−u0)i − t2

2
b(2)(V ,W ;ψ)〉�C

+t〈λ0, b(1)(V ; νi)(ut ◦�)i − t2

2
〈λ0 + t λ̇V , b(2)(V ,W ; νi)(ut ◦�)i〉�C

− t
2

2
〈λt ◦�,b(2)(V ,W ; νi)(u0 + t u̇V )i〉�C +o(t2).
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Hence, in view of (A1) and (A3), this implies the uniform estimate

‖ut ◦�−u0 − t u̇V ‖H ≤ ct2. (A6)

Relations (A4) and (A6) then result in the final estimation

‖ut ◦�−u0 − t u̇V ‖H +‖λt ◦�−λ0 − t λ̇V ‖M0 ≤ ct2. (A7)

A rigorous justification of the second-order expansion in (46) with

‖ut ◦�−u0 − t u̇V − t2

2
üV ‖H +‖λt ◦�−λ0 − t λ̇V − t2

2
λ̈V ‖M0 ≤ ct3 (A8)

can be obtained in the same manner as (A7). To derive higher-order asymptotic terms in (46),
one needs to repeat the procedure described above.
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